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Abstract. Dialog agents capable of autonomously acquiring new
concepts are likely to be more powerful than those relying on a
fixed set of preprogrammed concepts. kx-trees provide a novel un-
supervised learning method for concept acquisition. Through online,
incremental, divisive, binary-tree-based clustering, it organizes raw
sensory experiences into low-level concepts. Using the same mech-
anism, it can organize low-level concepts into higher level concepts
to create concept hierarchies of arbitrary depth. This paper contains
a description of kx-trees’ operating principles, illustrative examples,
and a discussion of how they relate to existing clustering algorithms
and similar biologically-inspired tools.

1 Introduction
The ability to interpret dialog in terms of concepts greatly increases
the perceived usefulness and fidelity of dialog agents. For instance,
identifying a novel word “Liam” with the concept of <boy’s name>
could allow a dialog agent to ask “When did you last speak with
him?” without having any other prior knowledge. Parsing dialog ac-
cording to the concepts associated with words and phrases is a com-
mon strategy in dialog agents and has proven itself very effective.
Part of speech tagging is the most common example of this; <noun>
and <verb> are examples of extremely general concepts. In most, if
not all, agents using concepts, the number and nature of concepts are
determined at the time of system creation by the programmer. The
work described here provides a mechanism for acquiring new con-
cepts based on an agent’s experience. It allows an agent to be created
without any pre-defined concepts, generating as many of them as its
experience warrants over the course of its lifetime.

In order to create concepts, instead of relying on hand crafted con-
cept definitions, sensory experiences must be grouped into concept
sets. These first level concepts can then be grouped into second level
concept sets, which in turn may be grouped into third level concepts,
etc. The process of forming elements into groups, known as cluster-
ing, is a common machine learning problem, falling into the family
of methods known as unsupervised learning. (A wide-ranging review
of unsupervised learning methods can be found in [6, ch. 10].)

In this work, sensory experiences (state observations) are grouped
into a small number of clusters. Each dimension in the state space
represents a single state variable. What distinguishes this work from
previous unsupervised learning methods is that it does not assume
that state dimensions are ordered fields. That is, this work does not
assume that 1 is less than 2 or that the distance from 1 to 2 is less
than the distance from 1 to 100. As a result, this method can be ap-
plied to many different data types, including continuous, discretized,
categorical, binary, and hybrid data.

The clustering algorithm described here is based on a binary deci-
sion tree. When it is initialized, the entire state space represents a sin-
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gle cluster. The state space is then repeatedly subdivided into regions,
with some of the regions being designated as clusters and others as
non-cluster regions. Each subdivision is represented by splitting a
leaf node into two new leaves. A subset of the tree’s leaves are the
clusters. The dimension along which to divide each leaf is chosen so
as to maintain and isolate clusters as much as possible. A tree created
by dividing regions along a constant value of a single dimension is a
kd-tree. A tree that chooses when and where to divide solely on the
basis of the data distribution is said to have the X-property [5]. In
order to distinguish between this and other tree-based tools (includ-
ing Decision Q-Trees [8], S-trees [23], and T-Trees, an extension of
Continuous U-Trees [27]) it will be referred to as a kx-tree.

In this paper, I present a detailed description of kx-trees,2 together
with two implementations demonstrating their operation. One kx-
tree is used to find clusters in a two-dimensional state space. A sec-
ond kx-tree is used with digital images to find visual primitives sim-
ilar to those found in human cortical area V1.

2 Method
kx-trees are conceptually similar to other decision tree based algo-
rithms, but differ in the specifics of their implementation. Although
the most well known implementations of decision trees are CART [2]
and C4.5 [19], a concise overview of a wide variety of decision trees
is given in [24]. A decision tree is defined by how it answers the three
questions 1) When to split a node, 2) Where to split that node, and
3) When to stop splitting a node. (Some trees also answer a fourth
question—When and how to prune branches from the tree—but kx-
trees do not use pruning.) After describing the structure and pop-
ulating process of a leaf, this section answers those questions for
kx-trees.

2.1 Leaf structure
Each leaf represents an explicitly bounded region of the state space.
When defining the initial leaf that encompasses the entire state space,
upper and lower bounds on all input dimensions must be known or
assumed. As a leaf is divided, the bounds of its children are cre-
ated using the decision boundary. In this way, the leaves form a non-
overlapping set of regions that completely cover the state space. (See
Figure 1) Each leaf is a hyperbox, defined by minimum and maxi-
mum values in each dimension of the state space.

Each leaf represents a single region. Each node on the tree rep-
resents a super-region, the combination of the regions defined by its

2 The unsupervised learning method kx-trees and its operating principles
were first presented at the 2010 Linguistic and Cognitive Approaches to
Dialog Agents Workshop, [20] from which papers in this issue were taken.
An account was subsequently published in the Ninth International Confer-
ence on Development and Learning. [21] Relevant portions of that written
description are included here.



A

B

C

D

E

F G

0.0 1.0

0.0

1.0

x

y

a) b) full state space

x = 0.5

y = 0.5 y = 0.5
B A

x = 0.75
D

y = 0.25
E

x = 0.625
F G

C

Figure 1. a) A partitioned state space and b) the decision tree
representation of that partitioning. The top node in the tree represents the

entire state space. It also indicates the division of the space into its left and
right halves along the line x = 0.5. Leaf nodes in the tree represent

individual regions as labeled. Any internal node on the tree represents the
union of all of the leaf node regions that fall under it.

children, which themselves may be either leaves or branch nodes.
Most tree-based learning tools are supervised learning algorithms,
rather than unsupervised. Observations of input states are typically
accompanied by categories, in classification problems, or values, in
regression problems. kx-trees differ from these. The leaves of a kx-
tree do not provide an estimate of a reward, value function, or class
membership. Instead, kx-trees identify locally dense regions of state
activity. In addition, kx-trees subdivide clusters once they exceed
a predetermined size. The motivating assumption behind kx-trees’
partitioning heuristic is that useful concepts capture a roughly fixed
number of observations. If a concept represents very few observa-
tions, it provides only limited abstraction, and if it represents a very
large number of observations, it may be too general to be useful.

2.2 When to split a node

A kx-tree node becomes eligible to split when the number of ob-
served states it contains exceeds a user-defined threshold, M . Each
observation that falls within a given region of state space is a member
of that region. When a node has more than M members, it is consid-
ered ripe for bisection. However, each member has a finite lifetime,
L, also defined by the user. As a result, a node is ready to split when
more than M of the last L state observations fall within its region of
state space.

2.3 Where to split a node

The objective of a kx-tree is to find clusters of observations and
bound them tightly. Each cluster represents a concept, a feature, or a
closely related group of states. Tighter bounds give a more concise
concept definition. Therefore, when a node is bisected, the dimension
along which to split and the value at which to split it are chosen such
that the cluster is preserved as much as possible. For all admissible
splits, the split which maximizes the disparity between the number
of members in each child is selected. If more than one candidate
split achieves the maximum value, then the split value is randomly
selected from among them. (See Figure 2.)

More formally, for an admissible split (d, x) along dimension d at
value x, the quality of the split, q is given by

qd,x = |ma −mb| (1)

where ma is the number of members from the parent node that
would fall under one of its children for that split and mb is the num-
ber of members that would fall under the other child node. Quality is
symmetric with respect to ma and mb. The winning split fulfills the
condition

(d, x)winner = max
d∈D

(max
x∈Xd

qd,x) (2)

where D is the set of all state space dimensions and Xd is the set
of all admissible split values for dimension d. The admissible split
values in Xd divide the region along dimension d roughly in half.
Xd is generated by taking a number of evenly-spaced values along
d. If dmin and dmax are the limits of d in the region to be divided,
then N admissible split values can be generated:

dlow = dmin +
1

4
(dmax − dmin) (3)

dhigh = dmin +
3

4
(dmax − dmin) (4)

xi = dlow + (dhigh − dlow)
i

N + 1
, ∀i ≤ N (5)

The resulting values of Xd fall between, but do not include, one
quarter and three quarters of the range of d. N is a user-selected
constant.

x

y

0

1/4

3/8

1/2

5/8

3/4

1

0 1/4 1/2 3/4 1
3/8 5/8

Figure 2. Illustration of the process of choosing where to split a node. For
a node in a two dimensional state space, bounded by {x, y} = {0, 1} with
N = 3, there are six possible ways to divide the node. Using Equation 5, the

three potential splits on each axis occur at 3/8, 1/2, and 5/8. The quality of
each split is determined by the imbalance that results between the number of

observations falling into each child node. The greater the imbalance, the
higher the quality of the split. For instance, applying Equation 1 to the split
(x, 1/2) yields qx,1/2 = |ma −mb| = |12− 9| = 3. Calculating the

quality of all potential splits reveals that (y, 5/8) best preserves the
clustering of the observations. It would be selected as the split location for

this example.

2.4 When to stop splitting a node
Due to the fact that members have a limited lifetime, an explicit stop-
ping criterion is typically unnecessary. The splitting condition of ac-
cumulating more than M members within any interval L becomes
harder to achieve as regions get smaller. With any continuous distri-
bution of observations, the member accumulation rate will approach



zero as region size approaches zero. However, when processing dis-
continuous distributions (as with categorical or discretized data), ob-
servations may be grouped at a single value, prompting endless re-
peated splits. This can occur whenever a region’s range in a given
dimension is less than the discrete resolution in that dimension. A
method for handling this degenerate case is to specify a threshold
for the minimum region size in each dimension. This can either be
a constant ϵ that is the same for each dimension or a vector E with
separate values for each dimension. Further divisions are not allowed
along any dimension for which dmax − dmin < ϵ. The same effect
could be achieved by adding a small amount of noise (ϵ) to each ob-
servation.

2.5 Clusters
kx-trees seek to isolate groups of members into clusters. A leaf node
becomes a cluster when it collects more than M/2 members. Thus,
when a node is divided, one of the children will become a cluster and
the other will not (although it may eventually become one too), and
the parent node ceases to be a cluster. Once a leaf node is designated
a cluster, it remains one, even if the number of members it contains
falls below M/2. Cluster nodes represent concepts, the categories
into which most of the data fall, or features which are common in the
data.

Once clusters have been formed, they serve as a means of inter-
preting new states. A single state observation is a point in state space;
if it falls within the hyperbox of a cluster, the data point can be rep-
resented more abstractly as that concept. But typically, clusters do
not provide complete coverage of the state space. In order to find a
conceptual interpretation of points that do not fall within a cluster,
a similarity or distance measure can be used to identify the nearest
clusters. The similarity measure used by kx-trees represents the frac-
tion of dimensions in which an observation matches a cluster. The
similarity, σ, between a state s and a cluster c in an n-dimensional
space, S , is given by

σ(s, c) =

∑n

i=1
in(s, c, i)
n

(6)

where

in(s, c, i) = 1, if si ≥ cimin and (7)

si < cimax

= 0, otherwise

where si is the value of s, cimin is the minimum value of c, and
cimax is the maximum value of c, all in the ith dimension. The corre-
sponding distance measure, δ, is given by

δ(s, c) = 1− σ(s, c) (8)

If s falls within c for all dimensions, then δ = 0 and σ = 1.
If s falls within c in only half of the dimensions, δ = σ = 1/2.
The distance measure takes no account of how far outside a cluster a
state may fall. Only matching and non-matching are reflected in the
distance. In this way, the distance measure is similar to Hamming
distance, but is extended to apply to real valued vectors and is nor-
malized to fall within the range [0, 1]. In fact, for binary state spaces,
the modified Hamming distance of Equation 8 reduces to the actual
Hamming distance divided by the number of state space dimensions,
n. It should be noted that this is a departure from many other un-
supervised learning approaches, which use Euclidean distance. The

modified Hamming distance and modified Hamming similarity avoid
making the assumption that the state space is well scaled or that its
dimensions are ordered fields, and this allows it to be applied to a
wider range of problems.

2.6 Coordinate transformation to feature space
Combined with the modified Hamming similarity, clusters can be
used to reinterpret states. The vector of similarities between a state
and each of the clusters translates that state into a new state space,
S ′, in which each dimension represents a cluster. The new state, s′,
is given by

s′ = [σ(s, c1), σ(s, c2), . . . σ(s, cn′)] (9)

where n′ is the total number of clusters and the dimensionality of
the new state space.

Multiple clusters may lie very near each other in S , such that a
state falling completely within one cluster may have high similar-
ity to other clusters as well. This would cause dimensions in S ′ to
behave as if they were highly non-orthogonal.

A pseudo-orthogonal state space can be formed by using a winner-
take-all projection onto S ′:

s′ = [0, 0, 0, . . . , σ(s, ci), . . . , 0, 0, 0] (10)

where similarity for the ith dimension is a maximum:

σ(s, ci) ≥ σ(s, cj), ∀j ̸= i (11)

If this condition holds for more than one dimension, the winner
is randomly selected from among them. By forcing s to project onto
only one dimension in S ′, the relative contributions of neighboring
clusters remain clearly distinguishable.

Transforming observations from S to S ′ re-expresses them in
terms of more complex features of the input space. This process con-
verts low level data into somewhat higher level features. In the cases
where n′ < n, it also results in a dimensionality reduction.

It is noteworthy that the inputs and the outputs of kx-trees’ coor-
dinate transformation are both in the same form: vectors with real-
valued elements. As a result, multiple kx-trees can be arranged hi-
erarchically with the output of one serving as input to another. It is
expected that with each level in the hierarchy, the feature represen-
tation would become increasingly abstract. This phenomenon is the
subject of current research.

3 Simulations and Results
3.1 Simulation 1: Clustering example

The first simulation reported here is a simple but illustrative exam-
ple. In it, a pair of arbitrarily selected two-dimensional normal dis-
tributions were used to generate random points in a two-dimensional
state space. The defining parameters for the kx-tree were chosen as
follows:

Anomaly lifetime, L = 100
Maximum number of members, M = 40
Number of split candidates per dim., N = 101
Minimum category size, ϵ = 0

The kx-tree processed the points as they were generated, creating
a partition of the state space and finding the cluster leaves associated
with it.



The results for simulation 1 are shown in Figure 3. The two nor-
mal distributions produced two groups of points, and the recursive
partitioning of the space produced cluster nodes corresponding to the
densest portion of each group. The tree in Figure 4 provides an alter-
native representation of the partition in Figure 3 and shows two major
branches, one corresponding to each of the clusters. Figure 5 shows
how the state space, S , maps onto the feature space, S ′, defined by
the clusters. Simulation 1 was run until a stable tree structure was
achieved, that is, no new nodes were created for a substantial period
of time. Simulation 1 provides an illustration of kx-tree’s operation
on a simple problem and is intended to provide an intuitive basis for
understanding the results of simulation 2.

Figure 3. Two dimensional state space as partitioned by a kx-tree. The two
normal distributions produced clearly separated groups of points. Each

bisection is shown by a line on the bisection boundary. Each region
represents a leaf node. Cluster nodes are shaded gray and correspond to the

densest part of each data distribution.
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Figure 4. Tree representation of the partitions shown in Figure 3. The root
node of the tree represents the entire state space. Each branching represents a

split at the line given by the corresponding equation. The right branch
represents the region to the right or above the split. Unfilled boxes on leaf
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Figure 5. Mapping from state space S to feature space S′. Values of s′ are
given for each region in s, by color.

3.2 Simulation 2: Vision

In the second simulation, kx-trees were applied to grayscale images
to find simple visual features. The simulation was designed to be sim-
ilar to the human visual processing system. The images were taken
from the CalTech-256 image database [9]. Images were randomly se-
lected, Gaussian blurred with a pixel radius of 6, then downsampled
by a factor of 4 (such that the resulting image had 1/16 the number
of pixels). This was done to remove the small-scale artifacts of JPEG
compression. Then, images were convolved with a center-surround
difference filter in order to mimic the retinal and thalamic process-
ing that results in center-surround receptive fields for neurons enter-
ing layer 4 of cortical area V1 [12]. Each pixel value in the result-
ing center-difference image was obtained by taking the original pixel
value and subtracting a fraction of the value of each of its neighbors:
one-sixth for the four pixels with which it shares a border and one-
twelfth for its four diagonal neighbors. The resulting difference value
had the range of [−1, 1]. Three-by-three pixel groups were taken in a
systematic raster tiling from the difference image and processed us-
ing a kx-tree. After the image had been completely scanned, a new
image was selected and the process repeated. The nine-dimensional
state space was partitioned and clusters were identified. The defining
parameters for the kx-tree were chosen as follows:

Anomaly lifetime, L = 1000
Maximum number of members, M = 70
Number of split candidates per dim., N = 1
Minimum category size, ϵ = 1.0

Choosing N = 1 ensured that all splits would be perfect bisec-
tions, and choosing ϵ = 1.0 ensured that no dimension would be split
more than once. The resulting partition had a maximum of 29(512)
distinct regions.

The result of running simulation 2 for 200,000 observations was a
set of clusters in the nine-dimensional state space, shown in the top
panel of Figure 6. As shown in the bottom panel, these can be no-
tionally compared to the receptive fields identified in the human vi-
sual cortex, which have exhibited strong characteristics of direction-
ality [12]. While the correspondence is too loose to be conclusive, it
suggests that kx-trees may produce feature representations that are
similar to those produced by the human neocortex.

A difference image can be reconstructed from the feature space
representation by breaking it into 9-pixel tiles, transforming each tile
from S to S ′, and then transforming them back to S. The forward
transformation given in Equation 9 was used here. The inverse trans-



Figure 6. Top: Graphical representation of the 29 clusters found in the
space of 9 pixel groups. In each cluster, dimensions (pixels) that have been

bisected are represented as white or black, depending on whether the cluster
falls above or below the bisection. Pixels in gray have not been bisected.

Bottom: Strongly oriented stimuli, matched to each cluster above. Most of
the clusters have unbisected pixels, and hence ambiguous receptive fields.

While not unique, these stimuli would each be a match for their
corresponding cluster in the top panel.

formation from S ′ to S was achieved by finding the centroid of each
cluster hyperbox, weighting it by the value of that dimension in s′,
and linearly summing the results for all clusters. The results of the
inverse transformation illustrate which elements are captured in the
feature representation. A richer feature set will result in a higher-
fidelity reconstructed image. The results of three such reconstruc-
tions are shown in Figure 7.

Figure 7. Original grayscale images (left, taken from [9]), difference
images (center), and reconstructed difference images (right), based on the
features from Figure 6. The difference images show the derivative of the

gradient in the images and mimic the information retained by the
center-surround processing performed by the human visual system. The
reconstructed images retain the larger-scale features from the difference

images.

4 Discussion

Concept acquisition can extend the capabilities of dialog agents,
making them more useful and more human-like in their dialog gener-
ation. In this work, concepts are defined as clusters of lower level ob-
servations. While this definition does not satisfy all theories of what
a concept is, it does provide a useful basis for beginning an inves-
tigation of the topic. Formulated this way, the problem of concept
acquisition becomes a clustering or unsupervised learning problem.
Acquired concepts can be high level and very abstract, or low level
and quite specific. In either case, clusters of state observations are
identified and used to represent the underlying states.



4.1 Getting from sensory experiences to useful
concepts

The primitive visual concepts created in the second simulation are
not rich enough to aid a dialog agent. They are only an illustration
of the first step of an iterative process which, if carried out to suf-
ficient depth, may be able to create concepts useful in dialog. For
example, the concept clusters identified in the simulation are remi-
niscent of line segments and the empirically demonstrated receptive
fields of neurons in the primary visual processing area of the cere-
bral cortex, V1. Applying a kx-tree to these concept elements may
lead to higher level concepts, spanning greater portions of the visual
space, corresponding to edges, corners, and curves. Elements of this
type have been shown to be receptive fields for neurons in cortical
area V2. Repeating the process may lead to complete shapes, and
then to objects, which neurons in V4 and higher cortical vision areas
have been shown to respond to. Concepts corresponding to objects
are sufficiently advanced to be useful in associating with and inter-
preting dialog.

Although the preceding example focused on vision, it could have
applied equally well to multi-modal associations. kx-trees are ag-
nostic to the physical phenomena and semantic content represented
by the sensory information and concepts that they cluster. Instead of
clustering only visual input, the kx-tree might have clustered an im-
age of a cockatoo with an audio recording of its song and the ASCII
string “bird.” Multi-modal clusters of this nature provide a straight-
forward mechanism for a dialog agent to parse its input in terms of
the concepts it represents and to make the appropriate semantic con-
nections.

4.2 Practical application of kx-trees to dialog
agents

Concept acquisition is only a part of a fully functioning dialog agent.
In addition to kx-trees, a dialog agent would need 1) a mechanism
for recording observed dialog patterns and their outcomes and 2) a
mechanism for selecting among candidate utterances when forming
responses. An architecture containing these elements was developed
for another application: control of robot movement. [22] In that work,
kx-trees generated concepts, sequences of which were recorded in a
world model. A planner used those recorded sequences of concepts
to predict likely outcomes to various actions, and based on those pre-
dictions selected which actions to take. In order to take full advantage
of the concepts created by kx-trees, a dialog agent would have to be
constructed on similar principles. Common practices of specifying
patterns that utterances may fall into, such as <subject>-<verb>-
<object>, presuppose the existence and definition of certain con-
cepts. When all concepts are generated during the agent’s operation,
preprogrammed patterns of this type cannot be used. This puts the
dialog agent at the disadvantage of having to learn all such useful
patterns, but also at the great advantage of not being limited to the
patterns that its creator saw fit to include.

A dialog agent using kx-trees and learning useful patterns through
experience may be able to solve some of the more challenging prob-
lems of dialog interpretation and generation. For instance, implica-
tures, including rhetorical expressions and expressives, are problem-
atic to interpret since the intended meaning is not contained in the de-
notative semantics of the utterance. Contextual information, such as
the speaker’s tone, the speaker’s facial expressions, and recent events
may all provide critical clues to the intended meaning. The difficulty
of this problem is illustrated by the fact that some human listeners are

unable to interpret some implicatures, particularly those containing
irony or sarcasm, even while having access to all the relevant contex-
tual data. Due to the fact that a kx-tree based dialog agent cannot be
given templates with which to interpret dialog, it is forced to learn
appropriate interpretations through experience. This process would
be similar to that used by a human, who, after being reassured by a
friend, “I’m fine,” later discovered that the friend was disappointed
and angry. Experience would teach this individual to attach some se-
mantic significance to the phrase “I’m fine” other than that which it
suggests on its face. Similarly, the dialog agent may be able to learn
to correctly interpret implicatures of all types.

The ability of a dialog agent using kx-trees to learn semantics from
experience is dependent on their ability to integrate sensory infor-
mation from a wide variety of sources and modalities. As described
earlier, this is the way that kx-trees generate concepts, and so would
be inherent in any agent employing kx-trees. Concepts are built from
low level data and are only given labels when the experience of the
agent (through hearing or reading) learns to associate one. It should
be noted that the concepts can be useful to the agent before they
are labeled. During concept acquisition, non-verbal cues such as fa-
cial expressions, breathing patterns, and body language could also
be identified as useful modes of communication. They could even be
used by the agent, if it were given a sufficiently capable hardware
embodiment. In this way, a dialog agent using kx-trees may provide
a unified approach to automatically learning and using both verbal
and non-verbal communication.

4.3 Implications of set-based concepts

There are several notions from cognitive psychology and philosophy
of what constitutes a concept. The definition of a concept that is used
here is operational and distinct from these. For the purposes of this
work, a concept is a set of related sensory experiences. For instance,
a set of images depicting dogs can be treated collectively as the con-
cept <dog>. Concepts can also be composed of other concepts. For
instance, <dog>, <cat>, <hamster>, and <goldfish> can all be
grouped together to form the higher level concept <pet>.

The notion of concepts as sets sensory experiences and other con-
cepts has several important implications. First, a concept may com-
prise heterogenous elements. For example, the concept <dog> may
include images of dogs, images of the printed word “dog”, audio
recordings of dogs barking, audio of the spoken word “dog”, the tac-
tile sensations of fur and of being licked, and the smell of dog in
need of a bath. For dialog agents, a concept of this type provides
connections between the word and the various sensory associations
that humans might make with it.

Second, a concept may be semantically ambiguous. The concept
<bark> for instance, in addition to including the written and spo-
ken word “bark”, could include both audio of dogs barking and the
tactile sensations arising from touching the covering of a tree. For di-
alog agents, this property of concepts allows them to maintain their
semantic ambiguity, which may be necessary in order to correctly
interpret some dialog, such as puns and riddles.

Third, a concept or sensory experience may be a member of mul-
tiple concepts. For example, the concept <dog> may be a member
of the higher level concepts <animal>, <pet>, <security system>,
and <friend>. The implication of this structure for dialog agents is
that reference to one concept (<dog>) can reference all its related
senses. This is in contrast to a strictly structured concept map, such as
WordNet [25] where each concept is the child of exactly one parent
concept.



4.4 Concept acquisition vs. symbol grounding

Symbol grounding is the problem of assigning concrete sensory pat-
terns to abstract categories. [10] Concept acquisition and symbol
grounding are both approaches to associating sensory experiences
with more abstract concepts. The difference between them is that
concept acquisition builds concepts from data while symbol ground-
ing begins with a number of concepts and relates them to data. Con-
cept acquisition works from the bottom up and symbol grounding
from the top down. Top down efforts to express concepts in terms
of raw data began in the early days of applying artificial intelligence
(AI). AI tools that performed symbolic, categorical, and logical ma-
nipulations to achieve their results could only be applied to physical
problems if those problems could be mapped into the symbolic do-
main in which the tool was operating. Because the tool had been
designed in the symbolic domain, the symbols that needed ground-
ing had also been chosen by the designer. These systems were not
capable of generating novel symbols or concepts based on the inputs
they received. Their representational capacity was inherently limited.

Bottom up concept creation suggests a different approach to de-
signing reasoning agents. If an AI tool or agent begins operation
without a dictionary of symbols, then it also cannot have prepro-
grammed rules for manipulating or computing with those symbols.
For example, if a dialog agent is created without parts of speech de-
fined, then it also cannot have templates for how to combine parts
of speech into sentences. An agent of this type must also include the
capacity to acquire rules and behaviors. And in cases where a shared
symbol dictionary is desired (as is the case when we wish to have a
dialog agent and a human agent “mean” the same thing when they
use the same word) agents must also include a mechanism for nego-
tiating the semantic content of symbols with other agents. When a
dialog agent is capable of 1) creating new concepts from experience,
2) acquiring new behaviors, and 3) negotiating the meaning of words
through interaction with human teachers, it lacks the limitations in-
herent in conceptual top down dialog agents. There is no obvious
limit to the sophistication of interpretation and expression of which
a bottom up dialog agent might be capable.

4.5 Relation to other work

A decision tree is a natural representation for the iterative division of
categories. Each leaf represents a terminal category. Each node repre-
sents both the super-category formed by combining its two children,
as well as the decision boundary used to differentiate between them.
(See Figure 1) Several tree-based adaptive partitioning algorithms
have been previously proposed. The Parti-Game algorithm [17] uses
a greedy controller to crawl through a partitioned state space. When
the controller fails, the last visited subspace is divided. Parti-Game
is specifically geared to geometric path planning; it assumes that all
paths through the state space are continuous. The G Algorithm [4],
U-Tree [16], Continuous U-Tree [26], AMPS [14], and decision trees
of Pyeatt and Howe [18] are all approaches used in conjunction with
dynamic programming methods or the popular temporal difference
method, Q-learning [28], to estimate the value function across the
state space. Whenever a subspace’s value estimate is shown to be in-
adequate, the subspace is divided. The G Algorithm handles binary
data, U-Trees handle discrete data, and Continuous U-Trees, AMPS,
and Pyeatt and Howe’s approach handle continuous data.

Taking a broader view, kx-trees are a member of the set of unsu-
pervised learning methods, that is, methods that group data that is
unlabeled and unclassified. Also referred to as clustering algorithms,

there are many unsupervised learning methods developed with dif-
ferent sets of assumptions, but kx-trees provide a novel collection of
characteristics. kx-trees are an on-line, hierarchical, divisive cluster-
ing algorithm. They are stable in the sense that cluster boundaries
do not move. kx-trees are most notable for what they don’t assume.
Unlike many clustering algorithms, kx-trees operate without assum-
ing 1) how many categories exist in the underlying data, 2) that prior
probabilities of any category are known, 3) that prior probabilities
are stationary, and 4) that the forms of the class conditional probabil-
ities are known. Once the dimensionality and range of the state space
is defined, kx-trees always start from the same initial conditions, so
there is no need to carefully pick initial values for cluster parameters.
Only the four operating parameters L, M , N , and ϵ need to be se-
lected. One of kx-trees’ greatest strengths is that it does not assume
that the input space is well scaled or even linear. In fact, kx-trees’ dis-
tance metric, the modified Hamming distance, does not even assume
that each of the input dimensions is an ordered field. As a result,
kx-trees can handle inputs consisting of enumerated types, such as
{poodle = 1, newfoundland = 2, beagle = 3, chihuahua = 4}. And
their computational demands are modest.

kx-trees’ strength comes at a cost, of course. They bound clus-
ters with hyperboxes, so clusters that are not well fit by a hyper-
box may not be concisely represented. If M is large, kx-trees can
require a relatively large amount of data before useful clusters are
generated. They are unstable in the sense that the total number of
clusters created can, under certain conditions, grow without bound if
not artificially limited. Like other unsupervised learning methods in
which the number of clusters is not specified, the validity of the clus-
ters found depends entirely on the appropriateness of the measure of
cluster goodness (the node-splitting criterion in the case of kx-trees).
And, like other unsupervised learning algorithms of its class, there
are no theoretical performance guarantees.

4.6 Relation to deep learning

The problem of concept acquisition in dialog agents is closely related
to the problem known in the machine learning community as feature
extraction or deep learning. [1] Deep learning approaches seek to
discover and exploit the underlying structure of a world by creat-
ing higher level, lower-dimensional representations of the system’s
input space. Deep learning algorithms include Convolutional Neu-
ral Networks (CNN) [15], Deep Belief Networks (DBN) [11], and
the Deep SpatioTemporal Inference Network (DeSTIN) [13]. Deep
learning algorithms such as these are alternative approaches, wor-
thy of consideration for automatic concept acquisition, although they
differ somewhat from kx-trees. CNNs are designed to work with two-
dimensional data, such as images, and they do not apply to arbitrarily
structured data, as kx-trees do. By using several layers of Restricted
Boltzmann Machines, DBNs are capable of generating sophisticated
features that allow it to interpret novel inputs. However, they are typ-
ically applied to the supervised learning problem of discrimination,
and require a substantial amount of labeled data in order to be ade-
quately trained. Whether DBNs can be applied to the unsupervised
learning problem of concept acquisition is unclear. DeSTIN incor-
porates both unsupervised and supervised learning methods and ap-
pears to be fully capable of concept acquisition. It has been published
only recently; future papers describing its operation and performance
will allow a more detailed comparison with kx-trees.



4.7 Relation to other biologically motivated
methods

The performance of kx-trees on identifying visual features similar to
the receptive fields of V1 is suggestive, but inconclusive. It indicates
that further investigation of kx-trees as a biological learning and con-
cept acquisition mechanism is warranted.

There are several other approaches to the problem of concept ac-
quisition that are motivated by theories of human psychology and
neuroscience. Hierarchical Temporal Memory (HTM) [7] uses a hi-
erarchy of Bayesian classification elements to cluster data into con-
cepts (“causes”) and to infer likely causes for a given set of in-
puts. Adaptive Resonance Theory (ART) [3] uses neural networks
to bound clusters of states within hyperboxes. Like kx-trees, both
HTMs and ART are online methods, meaning that they can incor-
porate new state observations and update their results incrementally.
However, HTMs and ART differ from kx-trees in that they use a Eu-
clidean distance metric to determine the similarity between states.
For Euclidean distance to be valid, the state space must be well
scaled, that is, a unit step in each dimension must represent the
same magnitude of change. This is a somewhat restrictive condition
that kx-trees do not need to meet. Because kx-trees do not use Eu-
clidean distances (or any p-norm), they do not require well-scaled
state spaces.
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